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! Department of Mathematics and Statistics, University of Waikato,
Hamilton, New Zealand
2 School of Mathematics and Institute for Mathematics and its Applications,
University of Minnesota, Minneapolis, Minnesota 564565, U.S.A.

p
A
JA ©

7\

L A

A

This review article is a guide to work that uses the method of separation of variables
for problems that occur in general relativity. The main emphasis is on recent progress
in the solution of important systems of equations such as Dirac’s equation, Maxwell’s
equations and the gravitational perturbation (or spin 2) equations. Recent advances
and established results for these equations in Kerr black hole and Robertson—-Walker
space-time backgrounds form the central theme of the discussion. These two
important physical examples also illustrate some of the difficulties in a theory of
solution by separation of variables methods for systems of equations. Other aspects
of this subject such as solutions of the Rarita—Schwinger equation (spin 2) and the
role of generalized Hertz potentials are also discussed.
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1. Introduction and scalar equations

The method of separation of variables is a well-known procedure in classical and
quantum mechanics. It enables the solution of many of the fundamental (scalar)
partial differential equations of mathematical physics to be reduced to the solution
of ordinary differential equations. Typically one tries to represent a solution of the
original problem as a sum or product of functions, each term depending on a single
coordinate. This is frequently successful for the Hamilton-Jacobi, Helmholtz and
Schrodinger equations. A comprehensive theory exists for which a review has been
given by Miller (1988). The aims of the theory are twofold: first to obtain explicit
solutions of partial differential equations and second, to find intrinsic charac-
terizations of the separable coordinates, separation parameters and frames that
occur in the solutions. The natural place for these methods as applied to scalar
problems in general relativity is in the solution of the equations for the geodesics. An
obvious question to ask is for what space times is it possible to solve the
Hamilton-Jacobi equation for the geodesics, ¢¥0,:80,;8 = A, by separation of
variables ? Although this problem has not been comprehensively solved, a significant
contribution was made by Carter (1968). He investigated spaces with a two-
parameter abelian isometry group for which the Hamilton—Jacobi equation for the
geodesics is soluble by additive separation of variables in such a way that a certain
natural canonical orthonormal frame is determined. Carter included in his studies the
extension of the classical separation of variables ideas to include charged particles in
the presence of an electromagnetic field. Through imposition of only the existence of
a two-dimensional abelian isometry group a detailed study was possible. The
additional requirement that the Schrodinger equation also separates via the product
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separation ansatz further made the complete characterization for such systems
possible. These requirements lead to a metric of the form

Z Z 4 4
ds* = A—Ad/\2+A—ﬂdﬂ2+—Z"i[P,\ dlﬁ—Q,\da]2+?A[Pﬂdwﬁ—Qﬂd0']2,
where 3 and o are ignorable variables (i.e. the components of the metric tensor do
not depend on these coordinates) and A and u are the two non-ignorable variables.
Here 4., P, Q. are functions of « for k = A, u. The function Z is defined by Z =

PQ, P Q,\ where 0?Z/0A0u = 0.

The sunplest electromagnetic field which is compatible with separability of the
Hamilton—Jacobi equation in these coordinates is a covariant vector potential of the

form
A=Z‘1(PAX/L+P/LX ydyr—Z71 (@ X, +Q/LX,\)d0'

with X, functions of k as above. The complete solution of the Einstein vacuum
equations (with and without a cosmological term) and the Einstein-Maxwell
equations for these restrictions results in four classes of solutions.

[A]  ds® = (A®+p*) [dA%/ 4, +dp?/4,]+ (4, [dxy— A" Ay P — 4, [dx + p* Ay )/ (A* + ),

where
A, = AN+ hAE=2mA+p+e®, A, =gApt —hp*+2qu+p,

_ |Au(vcosa+Asina) (Acoso—pusina)
A—e[ /\2+IM2 d'ﬁ /\2+//02 X )
[B(+)] ds? = (A2+12) [dA2/ 4, + dp?/ 4, + 4, dp]— 4, [dy +20u Ay 2/ (A2 +12),
where

A, = AGA*+ 2P =1+ h(A2 =) —2mA+ e, 4, =—hu*+2qu+p,

#[2l cos o+ (A2 +1%) sin o] /\eosoc
4= [ AP+ P dy+ 2+ 12
[B(—)] ds® = (42 + k) [AN/ 4, + dp/ 4, — A4, dy®]+ 4, [dy — 26A Ay (2 + ),
where

A, =2 =2mA+mn, A, = AGu*+ 2k u* —k*) —h(p® —k*) + 2qu — €2,

A[(u?+ &?) cosa+ 2kp sin o] Jpsino
A —
[ W+ kR d?'/f+ﬂ2+k2dx ’

[D] ds? = dA%/ A, +du/4,+ 4, dy* — 4, dy?,

where

= (A+e) A2 =2mA+n, Ad,=(A+e")u*—2qu+p,
A =e{Acosady—pusinady].

Other results are available on this topic, as for instance in Boyer et al. (1981).

2. Separation of variables in non-scalar equations

The theory for the solution of systems of equations by methods that directly or
indirectly relate to separation of variables has remained unclear in general relativity.
However, from a knowledge of group theory it is straightforward to obtain
a decoupling, in spherical coordinates, of the equations associated with the

Phil. Trans. R. Soc. Lond. A (1992)
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Separation of variables methods 339

Schwarzschild metric, because of the inherent spherical symmetry of this metric
(Gel'fand et al. 1963). This is also true for Robertson—-Walker cosmological models
which admit six-dimensional isometry groups (Kalnins & Miller 1991). The first
results that indicated that separation of variables is possible for a Kerr space-time
were those due to Teukolsky (1973). Teukolsky showed that certain components of
the gravitational perturbations of a Kerr black hole were solvable by the means of
the separation of variables method. (The gravitational perturbation equations (11)
describe spin 2 particles with zero mass (Lifshitz & Khalatnikov 1963).) Furthermore
his analysis extended to the spinor Maxwell and neutrino field equations. These ideas
have been further extended to the solution of the Dirac equation in an
Einstein—-Maxwell space time by Kamran & McLenaghan (1984a,b). One of the
crucial steps was the solution of the Dirac equation in the space time of a Kerr black
hole, achieved by Chandrasekhar (1976). This result was later extended by Page
(1976) to the case of an electron in the Kerr—-Newman space-time background of a
charged black hole. In this article we also show that the separation also works in the
presence of a magnetic charge ¢g. The expression for the infinitesimal distance in this
case is (in spherical coordinates)

ds® = (1 —2Mr/p?) di® — p?(dr?/4 + d6?)

—((r* +a?) + (2a*Mr/p?) sin® §) sin? 0 d@® + (4aMr/ p?) sin®6 d¢ d @,
where 4 = r?+a?+q¢*+9*—2Mr, p=r+iacosf, p® = pp* and the associated elec-
tromagnetic field has the components

A = {gr[dt—asin® O dp]+g cos Ola di — (r* + a?) dp ]}/ p?

This metric corresponds to the Kerr—Newman black hold solution when g = 0 and the
Kerr solution when ¢ = 0 also. Associated with this metric is the null tetrad of
vectors given by

lidat = A1 (A dt—p*dr—adsin®0dg), n,da’ = (1/2p%) (4dt+p?dr—adsin®Ode),
m;da’ = (1/pV/2) (iasin O di— p* dO —i(r* +a?®) sin 6 d¢).

The null tetrad is used when physical equations are rewritten in spinor form using the
null tetrad formalism as expounded in Penrose & Rindler (1984). (These vectors are
aligned with the principal null directions of the Weyl spinor.) The non-zero spin
coefficients are

1 cot O iasin @ iasin 0

— ﬂ = mT=—- T =
p

2+/2p° V2(p*)?* CV2p
p=—4/20°p*, y=p+@r—M)/2p% a=m—p*
The only non-zero component of the Weyl spinor is ¥, = —M/(p*)3.
The key observation of Teukolsky was obtained by examining the linear

perturbation equations dR,; = 0 for a Kerr black hole. From the Bianchi and Ricei
identities the following relations hold true
(0*—do+m) Py— (D—4p*) P, = 38Y,, (Ad—dy+u)¥P,—(0—47—28) ¥, = 36,
(D—p—p*) ¢ —(S—T1+m*—a*—38) R = ¥P,,
B+4B8—p*) O, — (A +2y+4p) P, = —35P,,
(D—p*) P, — (8% + 47+ 2a) ¥, = —3A¥,,

(A+p+p*+ 3y —y*) A— (8% + 3a+ ¥ +m—1%) 8 = — P,
Phil. Trams. R. Soc. Lond. A (1992)
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where D = 1'0,:, 4 = n'0,, and § = m'3,:. (In these equations 5”0, U N N
and A are ﬁrst order components of the Weyl spinor and the spin eoefﬁelents,
respectively.) As a result of the identities that result from the commutation relations
of the directional derivatives the perturbed components of the Weyl spinor ¥, and
¥, satisfy the decoupled equations

[(D—2p—p*) (4 —4y+p)— (8 —27 + 7* —a* —3P) (8* —da+m)] ¥, = ¥, P,,
[(4+2u+p*+3y—y*) (D—p)— (8% + 3o+ f*+2m—1%) (8 + 45 —7)| P, = ¥, P,.
When @, el@ttm®) = (p)4 ¥, @ elttmn) = ¥ = Teukolsky deduced that these equa-

tions can be reduced to the forms
[4D, D} + Lt L,—6ic(r+iacos )| @, = 0,
[4DY, Dy+ L_, L} + 6io(r+ia cos )] ¢, = 0,
where
L,=0/00+Q+ncotf, LI =0/00—Q+mncotf, Q= ocasinf+mcosect,

D, = 6+1K 2n(r—M) T—g-—iK 2n(r—M)

I S—4 = e ke S intA — (2 2
515 y , n=a "1 y , K= (*+a®)o+am.

From these equations we can see that a solution of the separated form @, =
R,(r)Sy(0) and @, = R_,(r)S_,(0) is possible if the functions R, ,(r), S, ,(0) satisfy
the ordinary differential equations
(4D, D} —6ior) R, = AR_,, (L', L,+6ac cosf)S, =—AS,,
(4Dt D, +6ior)R_, = AR_,, (L_,L}—6accos0)S_,=—AS_,

These are the equations for Teukolsky functions of spin 2. Similar results have also
been deduced for spin 1 Maxwell’s equations and the spin % neutrino field. In the
appendix Teukolsky functions for general spin are discussed together with some of
their properties.

3. Separation of variables and the Dirac equation in curved space-time

Dirac’s equation for spin 1 particles with charge ¢ in an electromagnetic field has
the form y*(V,—ied )y =im, ¢ where {y",y"} =2¢*1,, and {,} is the anticom-
mutator. In splnor form the Dirac equation is

(VBB’_ieABB’)(pB = (ime/V'2) Xp (VBB(_ieABB/)XB’ = —(ime/V/2)@p. (1)

Restricted to a black hole space time with both electric and magnetic charge and
expressed in terms of the modified field components

— ¢0 ei(mq1+(rt), ﬁ*(pl —_ ¢1 ei(mqy-}—rrt), XO’ — XO ei(mq)+rrt)’ ﬁXl/ — Xl ei(m(p+a't),
these equations assume the form
— (La—(ieg/+/2) cot 0) ¢y + (Dy—ieqr/n/24) ¢, = —imy(r —ia cos 0) X,
(4D] +ieqr/+/2) ¢, + LH— (ieg/A/2) cot 0) ¢, = —imy(r —ia cos ) X
(Lg+ ieg/v/2) cot 0) X+ (D, —ieqr/+/24) X, = im (r+ia cos 0) ¢0,
(ADg+ieqr/\/2)X0 + (Ly— (ieg/+/2) cot 0) X, = im(r+iacos0) ;.
Phil. Trans. R. Soc. Lond. A (1992)
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Separation of variables methods 341
They can be solved by the separation ansatz
Po=R:8, ¢ =R_.8, X,=—-RS,; X =R
to give the coupled equations

(Ly—(ieg/v/2) cot 0) S,

)Sy = (A—amgcos0) Sy, (Dy—ieqr/v/24)R_y = (A+im,r) Ry,
(L}§T+(ieg/\/2)cot0)5’

=—(A+am, COSB)S;, (ADI+1€q¢/\/2 = (A—im,r)R_4,

1
2
1
2

1
2

where A is a constant. The basic question left open by this work was how is the
separation parameter A invariantly characterized. This is answered by the existence
of a non-trivial symmetry operator associated with the Killing—Yano tensor K, ;. zp-
In tensorial notation, a Killing—Yano tensor of order p is any skew symmetric tensor
K, . . which satisfies V K = 0. For p = 2 this condition, in spinor notation,

Pty V) iy fhp
is equlvalent to the conditions

ViaaKpe) =0, VA(AKB'C') =0, Vg Ki+V,pK5 =0,
where Ka/;’ =K, upp = ilcanKiptespKyp]

is the decomposition of K, in terms of symmetric Killing spinors K 5, K 4. For
Kerr space-time there is only one Killing—Yano tensor of valence two and it has non-

zero components K, = —p*, and K ;.5 = p.
The corresponding characterization of the separation parameter is given by:
8, -
Ny 0 —Xa V2\=Xa)
where

= BB’ = BB’
Lya=K4a®Vop+iMys, Nyg=Kyq Vog =M 44
Here M ,, is a Killing vector obtained from the Killing—-Yano tensor via
— 1yBA’ —
Myp =3VP*K 55y ViaaMpp, = 0.

This result is due to Carter & McLenaghan (1979) though originally expressed in
tensor rather than spinor form. Writing the Dirac equation (1) in the form

()= )

one can show that the operator on the left-hand side of (2) is a symmetry operator for
the Dirac equation, i.e. it commutes with H. This operator together with the trivial
symmetry operators 0, 0, is responsible for the separation. The separation constants
are just the eigenvalues of these operators.

In fact the most general first-order formally self-adjoint operator that commutes
with the Dirac operator has, in tensor notation, the form (McLenaghan & Spindel
1979; Kamran et al. 1988),

L = (iB'L,+iCy' + Diy>y + Bl v )V, + RI, — (V¥ E') y* +5(VE D))y =iV, By
(3)
where C and R are real-valued constants, B;, D;; and K, are Killing—Yano tensors,
*Dy = Yoy D, By = ey B, y° = diea, vy’ and T =y lyF oty
Phil. Trans. R. Soc. Lond. A (1992)
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A lesson to be learned from this invariant characterization is that the existence of
a Killing—Yano tensor is crucial to the uncoupling of the Dirac equation in a Kerr
space-time. An immediate observation is that the notion of separation of variables
component by component is not able to describe this method of solution. The
occurrence of the factors p and p* in the form of the solution indicate an alternative
form of separation of variables. Separation that occurs in this manner in the Dirac
equation can be described using the idea of factorizable systems as formulated by
Shapovalov & Ekle (1974 a, b), see also Miller (1988).

Definition. A factorizable system for the Dirac equation

HY =y'V,¥ = (H,0/0'+V) ¥ =im, ¥ (4)
is a collection of four first-order partial differential equations of the form
oY /da’ = (Sy N=T1)¥, ()

where the A" are complex parameters, the functions Sy, V; are 4 x 4 matrices where
the determinant of the 16 x 16 matrix [S;;] is non-zero and where substitution of (5)
into (4) yields an identity. A factorizable system is said to be separable in the local

coordinates 2! if
08;;/0a* = 0V;/0a* = 0, for k #i.

The significance of this definition is the relation between factorizable systems and
complete sets of commuting first-order operators. In fact the integrability conditions

[02/0a 0a? — 02 /0’ Q'] W =0, i #)

for the existence of a factorizable system are satisfied if and only if there exist
functions A%, B’ such that the first-order partial differential operators

AP =A%y /0x*+ B, i=1,...,n
commute :
[AD ,AD] =0, for i+#j,
H=A® A"™S,, =8, A" =061 and B'=A"V,.

Here, I is the 4 x 4 identity matrix. As a corollary of this definition of a factorizable
system, the (separable) solutions ¥ of (5) are simultaneous eigenfunctions of the
operators A®¥. A question arising from this mechanism is what space-times and
coordinate systems permit separation via the factorization method. Debever &
McLenaghan (1981) have obtained a very general null tetrad fitting this method and
given by

122, ) (g "W () Ao+ fy W) Z(, ) ey dutm(@) do),
nydat = 251 Z (2, w)(—f, 952 W(w) ™" dw + W(w) Z(w, 2)" (e, du+m(x) dv),

|Z(@, w)H(iX (@) do+ X (%) Z(x, w) (6, du+ p(w) dv),

Z(w,x) = €, pw)—e,m(x), go=[L1+fD]E € =cosy, e =siny

pw) = (Ew?+E+ 1) cosy+2ckw, m(x) = — (c2x?+k*+1?)siny —2clz,
W(w)? = —3Ac*w* cos® y —Ackw® cos y + f w? + fLw+f,,
X(x)? = —IActatsin?y —Acla® siny — [ f, + 2A (B2 + 1) 2 + g, 2+ g,
Phil. Trans. R. Soc. Lond. A (1992)
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where A, fy.f1,90,91,k,1,¢ and 7y are constants. The metric is given by g, =
2(ln;, —mm*,) and is a solution of the Einstein field equations with cosmological
constant. The Dirac equation admits a solution separable in the form

e H,(x) K,(w)
e’H,(x) K,(w)
e VH,(x) K,(w) |’
eV H,(x) Ky(w)

W= el (Pu+a')

a
where el = Zi(h(w)—ig(x))}, h(w) = cw cosy +1and g(x) = casiny + k. The separated
ordinary differential equations are given by
L(Wo/ow+ [0 W H(pA® — e, A*) +3 W) K, — A'hK, = 2K,
Fa(—fo W3 /ow+g* W H(pA® — ey A*) = 3fy W) Ky — AThK, = — %K,
—iX0/0x+ X", A*—mA*)—4HX") H,—iA'gH, = — X*H |,
L5(iX0/0x +X (e, A* —mAt) +3iX') H, —id'gH, = A°H,.
The notion of factorizable systems is not, however, sufficient for a comprehensive

treatment of separable solutions of the Dirac equation. This is made clear by the
example (Fels & Kamran 1990), of a space-time with the infinitesimal distance

ds? = di? —a(t)?(da? + b(x)*(dy? + c(y)? dz?)). (6)

Metrics of this form include the various Robertson-Walker cosmological models. A
suitable choice of null tetrad frame is

lda? = 5 (dt+a(t)de), nyda’ = J5(dt—a(t)dx), my da’ = Jza(t) b(x) (dy +ic(y) dz).
The non-zero spin coefficients are
e=—y=d({t)/2v2a(t), p=—(1/12a(t))(a'(t)+b"(x)/b(x))
= (1/v/2a(t)) (a'(t) =" (2)/b(x)), a=—f=c /2\/20 b(x)c(y).

The metric given here has a Petrov type D Weyl tensor with I, n aligned with its
repeated null directions. The non-zero Weyl scalar is given by

¥, = (c(y) (V' (2)* —b(x) b"(x)) + " () /6a(t)"b(x)*c(y).

Separable solutions of Dirac’s equation when written in spinor form relative to this
null tetrad frame are

o = 4,0 B,(@) Co(y) €%, @y = A,(t) By() Cily) o,
Xo = Ao By(@) Cr(y) €%, xy = Aylt) Ba2) Coly) e,
where the functions appearing in the above solutions satisfy the coupled set of
ordinary differential equations
dd,/dt—iy/2X'A4, +3a/ (1) 4, = iA%4,,
a(t) /At —in/ 2014, —3a’ (1) A, = —iA4,,

b(x) dB;/dx+b'(x) B, —ib(x) A2B, = iA’B,,
—b(x) dB,/dx—b'(x) B, —ib(x) A2B, = iA*B,,
4 4 _ 4 ’
%__4_0 ¢(y) C, = —ix*C,, d_01_|_/\_01+56(é//)) O, =—iA%C,.

dy cly) * 2cly) dy  c(y)

Phil. Trans. R. Soc. Lond. A (1992)
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In contrast to the solution of the Dirac equation in the case of a Kerr—Newman
space-time, it is not possible to characterize all the separation constants as the
eigenvalues of first-order symmetry operators. In fact the space of first-order
symmetry operators commuting with the Dirac operator is three dimensional in this
case. This follows from the fact that for a general metric of the form (6) there is only
one Killing-Yano tensor of each type: a valence one Killing—Yano tensor K’ with
only one non-zero component K? = 1, a valence two Killing—Yano tensor K¥ with
only non-zero component K¥* = 1/a(t)b(x)c(y) and a valence three Killing—Yano
tensor K% with only non-zero component K*¥% = 1/a(t)*(x)%(y). The corresponding
first-order symmetry operators can be read off from the general form given in (3):

K =KLV, ~V, K", L =Ky yV+dViKL)y", N= Kby, —(VFK) .

The corresponding Dirac spinor solutions are eigensolutions of the operators K, N
and L* with corresponding eigenvalues iA%, iA? and A*A®. These operators together
with the Dirac operator H = y'V, all commute. (Here a complete characterization of
the separation parameters requires second-order symmetry operators. Examples of
separation for the Dirac equation are known that require even higher-order
symmetries.)

Recently Iyer & Kamran (1991) have studied separation of variables for the Dirac
equation in an extended class of lorentzian metrics with rotational symmetry.
Explicit solutions of the Dirac equation have been extensively studied in Minkowski
space-time. For a description of this work see Bagrov & Gitman (1990) and Shiskin
& Villalba (1989). In particular, Shiskin’s approach to obtaining separable
coordinates and eigenvalue characterizations holds promise for extension to curved
space-times.

4. Spin 1, 1 and } equations in a curved space-time background

Equations that have explicit solution by separation techniques similar to those for
the Dirac equation are the neutrino equation, Maxwell’s equations and the
Rarita—Schwinger spin § equations. We consider in all cases the Kerr space-time
background and, in the case of Maxwell’s equations, Robertson-Walker type space-

time also.

(@) The neutrino equation

The neutrino equation is in fact a special form of the Dirac equation for which
me = 0:
Vadp, = 0.

The eigenvalue equation for the non-trivial symmetry operator is
L' N4y 4 = — 30y

Kamran & Mclenaghan (19846) have shown that the Weyl neutrino equation is
separable in the class of solutions which are Petrov type D electrovac with non-
singular aligned Maxwell field satisfying the generalized Goldberg-Sachs theorem
and that within this class of space-times the Dirac equation is separable in Carter’s
[A] family of solutions and in the 4, null orbit solution of Debever & McLenaghan
(1981).
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(b) Maxwell’s equations

These equations in spinor form are V4@, =0, @,z =¢@g,. The separated
components of two of the three distinct components of ¢ 4, have the form

Poo = £, 8, eIt -y, = 2(p*)PR_, S_ el(m(pwt) (7)
where R, S, are Teukolsky functions, i.e. they satisfy the second-order ordinary
differential equations

(4D, D} —2ior—A)R,, =0, (AD§ Do+ 2ior+A)R_, = 0,

(LY L,+20acos0+A)S,, =0, (LyL{—20acosf—2A)S_; = 0.
From these equations and by suitable normalization we obtain the so-called
Teukolsky identities for spin 1:

AD,D,R_, = CAR,,, AD{D{4R,, = C*R_,, LyL;S.; = CS_,,
LILIS_,=08,,, C*=2A*—4a*c? a*=a*+am/o.
One can then obtain
= (1/4/2p*C)[DyL,—(1/p*) (L, +iasin 6D )] R_, S ,;.

The constants A and C have been shown by Kalnins et al. (1989 a) to be characterized
by eigenvalue equations of symmetry operators

(A¢B) c= [KflAf:E VEE _M&J [KCDD'VDD + MC ] ¢|B> c= %/\75,43:
Oty bap = (KU Vi + M (K5 PPV op +2M3) 1 dap = CPap-
As with the Dirac and Weyl neutrino equations, the Killing-Yano tensor and its
associated Killing tensor play a crucial role in the separation of Maxwell’s equations.

These equations can also be solved for the Robertson-Walker type space-times.
Indeed, solutions can be found of the form

00 = A) ho(@) go(y) €7, @or = A(t) k(%) 91(y) e @, = A(F) hy(%) go(y) 7%,

where the separation functions satisfy

o A C’(?/)] [a A
[ + 9o(y) = X491y )
(

dy cly) cy) dy ¢ 1) = 250:0).

Ao
W

3, A c’y
[@"'@]gl(y) A2 90(y), [_ c(y c(y 9,y A194(y),
A 0 b'(x /\ a b'(x

o b(x) e . _Q_ b'(x) A,
[“_a_bm]hﬁﬁ’“‘o’ ["’ o 2b<x>]"1+b<x)h2‘0

These equations are consistent if A; A, = A, A,. For a suitable choice of frame it is also
possible to solve the massive spin 1 equations in Robertson-Walker type space-
times. It is not, however, possible to proceed in this manner for free field equations
of spin greater than 1. The reason for this is that the whole process developed for
these space-times directly mimics the procedure used in Minkowski space-time,
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where group theory guarantees the results (Gel’fand et al. 1963). The recurrence
formulas among the matrix elements that are necessary to achieve separation in that
case can only be mimicked for general Robertson—Walker metrics for spins 1, } or 0.
Any attempt to mimic these methods of solution for higher-spin equations requires
that the metric

ds? = da? +b%(x) (dy® + c*(y) dz?)

correspond to a space of constant curvature. This occurs in the case of the various
Robertson-Walker cosmological models as has been shown by Kalnins & Miller
(1991).

(¢) The Rarita—Schwinger equation

The separation and solution of the equations for various scalars associated with a
Rarita—Schwinger field in a curved space-time was first achieved by Giiven (1980).
Giiven, in proving the no-hair conjecture for the uncharged black holes of
supergravity theory, showed that all solutions of the Rarita—Schwinger equation in
the Kerr space-time that cannot be transformed away via a supersymmetry
transformation are expressible in terms of Teukolsky functions for s = +2. Kamran
(1985) later showed the separability of the Rarita—Schwinger equation for all type D
vacuum space-times. The Rarita—Schwinger equation can be written in spinor form
as V40,55 = 0, where 0,55 = 0,5 . One can construct a new field ¢,z from the
Rarita—Schwinger field by

Papc = V(AA’ag,C)' (8)
It is not too difficult to show that the new field ¢ 5, must satisfy
Vibasc = WBCKbeﬁ’L_QDK(BAK’&ICS)K,_AaBCA” 9)

where ¥, @ and 4, respectively, are the components of the Riemann curvature spinor
(Penrose & Rindler 1984, 1986). At this point we will abandon the Rarita—Schwinger
equation and consider the more general coupled system formed by equations (8) and
(9). In a vacuum we have then

A — KL AT
VA’¢ABC - TBCaKLA" V(AA’aBC) - ¢ABC‘

This system is consistent in a (vacuum) space-time. Note that any solution 6,y of
the Rarita—Schwinger equation will be a solution of this coupled system (although
the converse is not true in general).

In a Petrov type D vacuum space-time and with a canonical tetrad, the above pair
of equations give rise to the following three equations involving ¢,:

(D—e—3p)$,— (0 +7—30) B = — ¥, Opo0,
(0—p—37)p,— (J_ 3y+u) o =— ¥y 0401
(D—p) Oyoy— (0 —a* =2+ %) Oy = Py
In Kerr space-time and with
Py = ¢y, D= b1, Moow = V20% 0000, Moorr = V200001,
these three equations become
[Dy+2/p*] D, — [Lg— (2ia/p*)sin 0] @y = — ¥, 140,
[Li%"' (2ia/p*)sin 0] D, + A[D%L_Q/P_*] Dy = — ¥, 701
[Do—1/p*] 1901 — [Lié_ (ia/p*) sin 0] 7400 = 2p*p*D,.
Phil. Trans. R. Soc. Lond. A (1992)
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Together these equations imply that @, satisfies the second-order separable equation
[AD1D§+LI%L%—4iUﬁ] P, =0,
which admits the solution @, =R S5 The functions R,s and S, satisfy the
Teukolsky equations
(4D, Di—4ior) By = ARy, (LI Ly+40acost) Sy =—AS,,

A solution can now be found for the rest of the components of the two fields. Such

a solution is
D, = R+§ S+%,

Moo = (1/¥5) [L%—(Qia/ﬁ*)sin O1R 38,3 oo = —(1/¥,) 4 DJ 2/:0>X<]R+3‘S+3
with the remaining components of the two fields being zero. By considering the
equations in which ¢, appears, one can construct a second solution

&, =R 8,
Mo = —(1/¥,) [Dy _2/.0*]R—§S—§, Ny = —(1/¥)) [Lg‘(gia/ﬁ sin0]R_y8
=¥y, Dy ="y, Mo = V20000, Ny = V20p*0111,
where the Teukolsky functions B_s and S_s satisfy the equations
(AD1y Dy +4ior)R_y = AR_y, (L_yLi—40acos0)S_3=—AS_;.

—— ——,

5. Generalized Hertz potentials

The use of generalized Hertz potentials to produce solutions to various equations
in algebraically spe(nal space-times is due to Cohen & Kegeles (1979). A generalized
Hertz potential is a totally symmetric 2s-spinor P4142- 4w satisfying

VAX,VAXPA1A2~~-A2s_ VB‘AIGBA2~~ 25)—(28— )STB»C»(A1A2PA3”'A25)B’C' -0,

where G424 is an arbitrary gauge field and ¥ is the Weyl spinor. One can construct
a spin s field from the potential and gauge field as follows:

¢“11“12‘--“123 = V(AlA;VAzA; Tt VA2S—1A;S—1 [VAzsA;sPA;A;mA;S_GAzs)A;A;mA;s_l]'

In a flat space-time the resulting field ¢, 4 will satisfy the massless spin s field
equation VEp ¢y, , =0. However, when' the space- tlme is curved the field
Pa,a,.. a4, satisfies the ‘massless spin s field equations for s =3 and s = 1 only. For
s = 2 the method of generalized Hertz potentials can be used to construct a solution
for the linear gravitational perturbations of the Kerr space-time. Solving the
equation for the generalized Hertz potential via separation of variables depends
crucially on making the right choice of gauge field.

For the Weyl neutrino equation the corresponding Hertz potential P4 satisfies
the equation VB4V 5, PE'—VB4'Q, = 0, where G is an arbitrary gauge field. The new
field is constructed as follows: @, =V, ,, P4 —@ ,. In the Kerr black hole space-time
a convenient choice of gauge field is Gz = Upy PE where Ugy, is the vector having the
components _ _ _ _

Uy =p*, Uy =—m* Uy=1% Uyp=—p*
This choice leads to Hertz potentials with solutions
P =R_,8ye!meto PV=0 or P = pRyS_e'™etoh, P =0,

Phil. Trans. R. Soc. Lond. A (1992)
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where R, 1, S, are Teukolsky functions obtained from the separation equations for
Dirac’s equation by setting m, = 0. Both possible choices of Hertz potential give rise
to the same neutrino field.

For the spinor form of Maxwell’s equations a similar potential can be found by
writing B

B = V(AA’[VB)B’PA o _GB)A it
The new field satisfies Maxwell’s equations in spinor form. With the specific choice
of gauge field G2 = —2U... P"" (Kerr black hole) the form of the Maxwell field
given in (7) is recovered with the Hertz potentials being of the form
PO — R_, 8, elttrmp POV = p1v =,

or P = p*R,, S_, eltrtrmp), PO = poo — .
Both these forms of the Hertz potential lead to the same Maxwell spinors. An
interesting feature of the Hertz potentlal equation is that the choice of gauge

function Gpie4s = —25U,, PB42-4is yields solutions whose only non-zero com-
ponents are of the form

PO — R—s Ss el(mq7+(rt), or PVl = ﬁzSRs S—s el(mgv-i-u‘t)’

where R, , S, are the spin s Teukolsky functions satisfying the second-order
equations

(4D]_yDy+2(2s—1)ior)R_, = AR_,, (4D,D!—2(2s—1)ior)R, = AR,,
(Li_sLy+22s—1)oacos0)S,, = —AS,,, (Ly_Li—2(2s—1)cacosf)S_, =—AS_
(10)

These potential functions can be used to obtain components of the perturbed metric
tensor corresponding to gravitational perturbations. The perturbed Einstein vacuum
field equations 0R,, = 0 take the form

Vprha/}_VpV(ﬂh/;)—"VaV/}k = O, h == }I/Z, h,ul/ = huﬂ. (11)

Here £, is the perturbed metric tensor. This can be thought of also as a spin 2 wave
equation. In terms of the Hertz potential and gauge spinors the perturbed metric is
given by

hCDM ‘N’ (V(CP D)Q’ PM ‘N’ re ,_V(CP’GD)M’N/P/)
+ (VE(M’VFN’) PEFCD_VE(M/GN') CDE)

and the perturbed Weyl tensor is given by ¥, 5c, = V4w Vex A"V * ¢p). The explicit
expressions for the perturbed metric tensor are

Py ={—=1, 0, [(0* + a+ 3% —7%) (8% + 4%+ 37%) + m* m¥ (D — p*) (D + 3p*)] +1,m*,,
[(D+p—p*) (8% -+ 4%+ 37%) + (3% — o+ BB —m— %) (D4 3p*)} R_, S, 1ot
{10, [(0+o*+38—71) (0 +48+37)+m,m,D—p)(D+3p)]+1,m,
[(D+p*—p) (6+4f+37)+ (0—a*+3f—n*—7) (D+3p)]} R_,S_,e!t*m9),

where the choice of gauge is Ih,, = 0, h = 0. An alternative method of solution of the

gravitational perturbation problem has been given in Chandrasekhar’s book (1983).
In his solution the expressions for the perturbed components of the metric are more

Phil. Trans. R. Soc. Lond. A (1992)
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complex. A question that remains unanswered is for what operator can the perturbed
components of the metric be represented as eigenfunctions with eigenvalue A? In
addition to the two solutions given above, is it possible to construct solutions of the
gravitational perturbation equations in the de Donder gauge: V*4,, =0, h=0? In
his book Chandrasekhar investigated the problem of the combined electromagnetic
and gravitational perturbations for the case of a Kerr-Newman black hole. He was
unable to achieve a decoupling analogous to that achieved for the Kerr black hole.
One way to approach this problem would be to look for a second-order symmetry for
the combined system of perturbation equations. If such exists then it would indicate
the possibility of obtaining closed form solutions for this problem. This matter is
currently being investigated.

We have seen that the solution of systems of differential equations that arise in
general relativity via some sort of separation of variables contains elegant examples
but as yet no theoretical basis. More work needs to be done to improve this situation
as well as to solve some of the problems specific to general relativity itself, e.g. the
combined perturbation problem for the Kerr—Newman black hole.

Appendix A. Teukolsky functions and Teukolsky-Starobinsky identities

The Teukolsky functions B, and S, which satisfy the second-order differential
equations (10), have a number of interesting properties. The equations satisfied by the
S, ; functions are forms of the confluent Heun equation. Expansion theorems and
studies of the spectrum of the parameter A and its various asymptotic forms have
been worked out by Fackerell & Crossman (1977) and Leaver (1986). In particular it
is possible to generalize the properties given above for the case of the Maxwell field
and, implicitly, for the spin } field with m, = 0. The relations which generalize these
for spin s are the so-called Teukolsky—Starobinsky identities. We first note that R_
and 4°R_ satisfy complex conjugate equations. Similarly S, (7 — 0) satisfies the same
equation as S_ (6).

The following two identities (Kalnins et al. 198956) hold for s =13, 1,3, 2,3, ...:

A°D¥(AD]_ Dy +2(2s—1)ior) = (4D,_,D{—2(2s— 1) ior) 4°D3*, (12)
L, Ly ...Lg L(Li_ L,+2(2s—1)cacosb)
= (L, LI—2(2s—1)oacosO)L, L,  ...L, L,
Two very similar identities are obtained by taking the complex conjugate of the first
identity (D <> D"), and by letting 8 > —6 in the second identity (L« —L"):
A*D{*(AD,_ D} —2(2s—1)ior) = (4D]_ Dy+2(2s— 1) ior) 4°D}*, (13)
Ly Ly ... LI_LYL,_ LI—2(2s—1)cacosb)
= (Li_ L,+22s—1)oacosO)L{_ L} _...LI_ L.
A direct consequence of these is the following. If one acts on the function R_; with
both sides of (12) then one finds that 4°DE*R__ is a solution of the Teukolsky equation
for 4°R ;. Similarly by acting on the function 4°R ., with both sides of (13) one finds
that 4°D{¥*A°R_, is a solution of the Teukolsky equation for R_,. By suitably
choosing the relative normalization of the functions B_, and R, we can write
ADBR_, = O, A°R,,, ADI¥AR,, = C¥R_,,
where C is a complex constant.

Phil. Trans. R. Soc. Lond. A (1992)
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A similar treatment of the angular identities results in the relations

Ly _ L, oLy LS, = B, S—s’ LI—SL;—S "‘L;—IL;S—S = Bs Sis

where B, is a real constant (B, = (—1)’B;). Here C; and B, are referred to as
Starobinsky constants.

By use of the mapping 7 <> » = ia cos 6 one can make the above radial and angular
identities almost formally identical. By such means one can show that B2 =
(—1)%|C%l37—0- Computation of |C > can be achieved by examining the identity
A*D{FADFER_ = |C|* and replacing the occurrences of second-order (and higher)
derivatives of R_, with first and zero-order terms by means of the Teukolsky
equation that B_; must satisfy. Such a procedure is very protracted for all but the
first few small values of s. Chandrasekhar (1991) has shown how to determine the
general expression for the Teukolsky—Starobinsky identity |C|* in the form of a
determinant resulting from considerations following from the notion of algebraically
special solutions. The Starobinsky constants for spin 1 and 1 have already been
mentioned. For spin § and 2 they are

|Cs* = A2(A+ 1) — 160%(Aa® —a?),
|C,)2 = A%(A +2)2— 80 a?A(5A + 6) + 96020’ A + 14400t + 14402 M3,
where o® = a®>+ma/o.
We note here that it is possible to invent a relativistically invariant equation

system which has the general spin s Teukolsky functions appearing in their solution,
in fact the coupled system of equations

VAA/(pAAZ...AZS = (2s—1)(s—1) Y’ac;Aﬁﬁ;...A”)Bc’
IV(AIA’gﬁ;“,AZS)_%(28_3) az‘lf;z...AstAl)A’I = I(pAlAz...AZ
where [ = ¥ 5. PABCP. Typically this system has solutions of the form

4 , -1
Po...0o = Rssselemq))’ 030 = '\/2,02(23_1) (8—1) 7 A(D;r 28— /10
2

~1
V2p%(2s—1)(s—1) ¥, (

0(1)/..,0 = —(2s—1) (ia/p*)sin ),

with similar expressions existing for solutions with indices consisting of all 1s.
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